
Inhibition of FLT3 signaling targets DCs to ameliorate autoimmune disease
Author(s) -
Katharine A. Whartenby,
Peter A. Calabresi,
Erin McCadden,
Ba D. Nguyen,
David Kardian,
Tianhong Wang,
Claudio A. Mosse,
Drew M. Pardoll,
Donald Small
Publication year - 2005
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0506088102
Subject(s) - experimental autoimmune encephalomyelitis , autoimmune disease , immunology , immune system , biology , haematopoiesis , cancer research , microbiology and biotechnology , stem cell , antibody
Autoimmune diseases often result from inappropriate or unregulated activation of autoreactive T cells. Traditional approaches to treatment of autoimmune diseases through immunosuppression have focused on direct inhibition of T cells. In the present study, we examined the targeted inhibition of antigen-presenting cells as a means to downregulate immune responses and treat autoimmune disease. Dendritic cells (DCs) are the central antigen-presenting cells for the initiation of T cell responses, including autoreactive ones. A large portion of DCs are derived from hematopoietic progenitors that express FLT3 receptor (CD135), and stimulation of the receptor via FLT3 ligand eitherin vivo orin vitro is known to drive expansion and differentiation of these progenitors toward a DC phenotype. We hypothesized that inhibition of FLT3 signaling would thus produce an inhibition of DC-induced stimulation of T cells, thereby inhibiting autoimmune responses. To this end, we used small-molecule tyrosine kinase inhibitors targeted against FLT3 and examined the effects on DCs and their role in the promulgation of autoimmune disease. Results of our studies show that inhibition of FLT3 signaling induces apoptosis in both mouse and human DCs, and thus is a potential target for immune suppression. Furthermore, targeted inhibition of FLT3 significantly improved the course of established disease in a model for multiple sclerosis, experimental autoimmune encephalomyelitis, suggesting a potential avenue for treating autoimmune disease.