z-logo
open-access-imgOpen Access
Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast
Author(s) -
Qinshan Gao,
Biswadip Das,
Fred Sherman,
Lynne E. Maquat
Publication year - 2005
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0500684102
Subject(s) - eif4e , nonsense mediated decay , messenger rna , messenger rnp , biology , eukaryotic translation , translation (biology) , microbiology and biotechnology , initiation factor , p bodies , rna splicing , genetics , gene , rna
Nonsense-mediated mRNA decay (NMD) in mammalian cells is restricted to newly synthesized mRNA that is bound at the 5' cap by the major nuclear cap-binding complex and at splicing-generated exon-exon junctions by exon junction complexes. This messenger ribonucleoprotein has been called the pioneer translation initiation complex and, accordingly, NMD occurs as a consequence of nonsense codon recognition during a pioneer round of translation. Here, we characterize the nature of messenger ribonucleoprotein that is targeted for NMD in Saccharomyces cerevisiae. Data indicate that NMD targets both cap-binding complex (Cbc)1p- and eukaryotic translation initiation factor (eIF)4E-bound mRNAs, unlike in mammalian cells, where NMD does not detectably target eIF4E-bound mRNA. First, intron-containing pre-mRNAs in yeast are detectably bound by either Cbc1p, or, unlike in mammalian cells, eIF4E, indicating that mRNAs can be derived from either Cbc1p- or eIF4E-bound pre-mRNAs. Second, the ratio of nonsense-containing Cbc1p-bound mRNA to nonsense-free Cbc1p-bound mRNA, which was < 0.4 for those mRNAs tested here, is essentially identical to the ratio of the corresponding nonsense-containing eIF4E-bound mRNA to nonsense-free eIF4E-bound mRNA, and both ratios increase in cells treated with the translational inhibitor cycloheximide (CHX). These data, together with data presented here and elsewhere showing that Cbc1p-bound transcripts are precursors to eIF4E-bound transcripts, demonstrate that Cbc1p-bound mRNA is targeted for NMD. In support of the idea that eIF4E-bound mRNA is also targeted for NMD, eIF4E-bound mRNA is targeted for NMD in strains that lack Cbc1p. These results suggest that both Cbc1p- and eIF4E-mediated pioneer rounds of translation occur in yeast.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here