z-logo
open-access-imgOpen Access
Altered pharmacology and distinct coactivator usage for estrogen receptor-dependent transcription through activating protein-1
Author(s) -
Edwin Cheung,
Mari Luz Acevedo,
Philip A. Cole,
W. Lee Kraus
Publication year - 2005
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0407113102
Subject(s) - estrogen receptor , coactivator , microbiology and biotechnology , transcription factor , estrogen receptor alpha , transcription preinitiation complex , transcription (linguistics) , enhancer , activator (genetics) , signal transduction , biology , chemistry , rna polymerase ii , receptor , promoter , biochemistry , gene expression , gene , genetics , philosophy , linguistics , cancer , breast cancer
Estrogen signaling occurs through at least two distinct molecular pathways: (i) direct binding of liganded estrogen receptors (ERs) to estrogen-responsive DNA elements (EREs) (the "ER/ERE pathway") and (ii) indirect recruitment of liganded ERs to activating protein-1 (AP-1)-responsive DNA elements via heterodimers of Fos and Jun (the "ER/AP-1 pathway"). We have developed a biochemical assay for examining ligand-regulated transcription by ERs in the ER/AP-1 pathway. This assay recapitulates the altered (i.e., agonistic) pharmacology of selective estrogen receptor modulator drugs in this pathway reported previously by using various cell-based assays. We used our biochemical assay to examine the detailed mechanisms of ER/AP-1-dependent transcription. Our studies indicate that (i) ERalpha/AP-1 complexes play a critical role in promoting the formation of stable RNA polymerase II preinitiation complexes leading to transcription initiation, (ii) chromatin is a key determinant of estrogen and selective estrogen receptor modulator signaling in the ERalpha/AP-1 pathway, (iii) distinct domains of ERalpha are required for recruitment to DNA-bound Fos/Jun heterodimers and transcriptional activation at AP-1 sites, and (iv) different enhancer/activator combinations in the ERalpha and AP-1 pathways use coactivators in distinct ways. These studies have increased our understanding of the molecular mechanisms underlying ligand-dependent signaling in the ER/AP-1 pathway and demonstrate the usefulness of this biochemical approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here