z-logo
open-access-imgOpen Access
Transplanted bone marrow generates new neurons in human brains
Author(s) -
Éva Mezey,
Sharon Key,
Georgia B. Vogelsang,
Ildikó Szalayova,
G. David Lange,
Barbara J. Crain
Publication year - 2003
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0336479100
Subject(s) - bone marrow , pathology , biology , stem cell , progenitor cell , gastrointestinal epithelium , immunocytochemistry , immunology , microbiology and biotechnology , medicine , epithelium
Adult bone marrow stem cells seem to differentiate into muscle, skin, liver, lung, and neuronal cells in rodents and have been shown to regenerate myocardium, hepatocytes, and skin and gastrointestinal epithelium in humans. Because we have demonstrated previously that transplanted bone marrow cells can enter the brain of mice and differentiate into neurons there, we decided to examine postmortem brain samples from females who had received bone marrow transplants from male donors. The underlying diseases of the patients were lymphocytic leukemia and genetic deficiency of the immune system, and they survived between 1 and 9 months after transplant. We used a combination of immunocytochemistry (utilizing neuron-specific antibodies) and fluorescent in situ hybridization histochemistry to search for Y chromosome-positive cells. In all four patients studied we found cells containing Y chromosomes in several brain regions. Most of them were nonneuronal (endothelial cells and cells in the white matter), but neurons were certainly labeled, especially in the hippocampus and cerebral cortex. The youngest patient (2 years old), who also lived the longest time after transplantation, had the greatest number of donor-derived neurons (7 in 10,000). The distribution of the labeled cells was not homogeneous. There were clusters of Y-positive cells, suggesting that single progenitor cells underwent clonal expansion and differentiation. We conclude that adult human bone marrow cells can enter the brain and generate neurons just as rodent cells do. Perhaps this phenomenon could be exploited to prevent the development or progression of neurodegenerative diseases or to repair tissue damaged by infarction or trauma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here