z-logo
open-access-imgOpen Access
Air-stable, storable, and highly efficient chiral zirconium catalysts for enantioselective Mannich-type, aza Diels–Alder, aldol, and hetero Diels–Alder reactions
Author(s) -
Shu̅ Kobayashi,
Masaharu Ueno,
Susumu Saitō,
Yumiko Mizuki,
Haruro Ishitani,
Yasuhiro Yamashita
Publication year - 2004
Publication title -
proceedings of the national academy of sciences of the united states of america
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.011
H-Index - 771
eISSN - 1091-6490
pISSN - 0027-8424
DOI - 10.1073/pnas.0307870101
Subject(s) - lewis acids and bases , enantioselective synthesis , catalysis , diels–alder reaction , zirconium , chemistry , organic chemistry , aldol reaction , lewis acid catalysis , chiral lewis acid , combinatorial chemistry
For the synthesis of optically active compounds, chiral catalysts have attracted much attention because large quantities of optically active molecules can be prepared from a small amount of a chiral source. However, many chiral catalysts are often unstable in air (oxygen) and/or in the presence of water. This is especially the case in chiral Lewis acid catalysis, because most Lewis acids are air- and moisture-sensitive. Therefore, many catalysts are prepared in situ in an appropriate solvent just before use, and they cannot be stored for extended periods. We have developed air-stable, storable, and highly efficient chiral zirconium Lewis acids. The catalysts promoted asymmetric Mannich-type, aza Diels-Alder, aldol, and hetero Diels-Alder reactions efficiently with high enantioselectivities. A key to stabilizing the catalysts is an appropriate combination of chiral zirconium Lewis acids with molecular sieves, and the zirconium-molecular sieves-combined catalysts can be stored for extended periods in air at room temperature without loss of activity. Moreover, it has been demonstrated that the catalysts can be recovered and reused.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here