
Dead and down woody debris fuel loads in Canadian forests
Author(s) -
Chelene C. Hanes,
Xianli Wang,
William J. de Groot
Publication year - 2021
Publication title -
international journal of wildland fire
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.002
H-Index - 86
eISSN - 1448-5516
pISSN - 1049-8001
DOI - 10.1071/wf21023
Subject(s) - fire regime , environmental science , coarse woody debris , debris , range (aeronautics) , boreal , fuel efficiency , dead wood , thinning , atmospheric sciences , physical geography , forestry , meteorology , geography , ecosystem , ecology , engineering , geology , habitat , archaeology , aerospace engineering , biology
In Canada, fire behaviour is modelled based on a fuel classification system of 16 fuel types. Average fuel loads are used to represent a wide range of variability within each fuel type, which can lead to inaccurate predictions of fire behaviour. Dead and down woody debris (DWD) is a major component of surface fuels affecting surface fuel consumption, potential crown fire initiation, and resulting crown fuel consumption and overall head fire intensity. This study compiled a national database of DWD fuel loads and analysed it for predictive driving variables. The database included DWD fuel loads for all dominant Canadian forest types at three size classes: fine (<1 cm), medium (1–7 cm) and coarse (>7 cm). Predictive models for DWD fuel load by size classes individually and collectively for various forest types and ecozones were analysed. Bioclimatic regime, age, spatial position, drainage, and structural components including diameter at breast height and stem density were significant variables. This study provides tools to improve our understanding of the spatial distribution of DWD across Canada, which will enhance our ability to represent its contribution within fire behaviour and fire effects models.