Spatial scales influence long-term response of herbivores to prescribed burning in a savanna ecosystem
Author(s) -
Duncan M. Kimuyu,
Ryan L. Sensenig,
Robert Chira,
John Githaiga,
Truman P. Young
Publication year - 2017
Publication title -
international journal of wildland fire
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.002
H-Index - 86
eISSN - 1448-5516
pISSN - 1049-8001
DOI - 10.1071/wf16152
Subject(s) - herbivore , fire regime , ecology , geography , ecosystem , habitat , grassland , spatial ecology , forage , vegetation (pathology) , prescribed burn , environmental science , physical geography , forestry , biology , medicine , pathology
Both wild and prescribed fire in savanna ecosystems influence habitat use by herbivores by creating or maintaining spatial and temporal heterogeneity in forage quality and vegetation cover. Yet little is known about how spatial scales influence long-term persistence of fire effects. We examined changes over a 6-year period in herbivore preference for experimentally burned patches that varied in spatial extent and grain. Avoidance for the burns by elephants and preference for the burns by impala and Grant’s gazelle decreased significantly. For the rest of the species (zebra, eland, oryx, hartebeest, warthog and hare), there were no significant changes in preference for the burns. Changes in preference for the burned areas depended on the spatial extent and grain of the burn, with intermediate-size (9-ha) burns and large (8-ha) patchy burns being more preferred 6–7 years after fire. Grain, but not the spatial extent of the burned area, influenced changes in grass height. Fire resulted in a delayed reduced tree density irrespective of the spatial scale of the burn. Results of this study indicate that, depending on the scale of fire prescription, the impacts of fire on herbivores may last longer than previous studies suggest.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom