z-logo
open-access-imgOpen Access
Rapid increase in coral cover on an isolated coral reef, the Ashmore Reef National Nature Reserve, north-western Australia
Author(s) -
Daniela M. Ceccarelli,
Zoe T. Richards,
Morgan S. Pratchett,
Christopher Cvitanovic
Publication year - 2011
Publication title -
marine and freshwater research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.693
H-Index - 88
eISSN - 1448-6059
pISSN - 1323-1650
DOI - 10.1071/mf11013
Subject(s) - reef , coral , aquaculture of coral , resilience of coral reefs , coral reef , environmental issues with coral reefs , coral reef protection , ecology , fringing reef , fishery , coral reef organizations , oceanography , population , coral bleaching , marine reserve , ecosystem , biology , geography , habitat , geology , demography , sociology
Against a background of coral reef ecosystem decline, understanding the propensity for coral communities to recover after acute disturbances is fundamental to forecasting and maintaining resilience. It may be expected that offshore reef ecosystems are less affected by anthropogenic disturbances compared with reefs closer to population centres, but that recovery may be slower on isolated reefs following disturbances. To test the hypothesis that community recovery is slow in isolated locations, we measured changes in coral cover and relative abundance of coral genera over a 4 year period (2005–09) at Ashmore Reef, north Western Australia, following severe bleaching. The percent cover of hard coral tripled, from 10.2% (±1.46 s.e.) in 2005 to 29.4% (±1.83 s.e.) in 2009 in all habitats (exposed and lagoonal) and depth zones (2–5 and 8–10 m), and the percent cover of soft corals doubled, from 4.5% (+0.63 s.e.) in 2005 to 8.3% (+1.4 s.e.) in 2009. Significant shifts in the taxonomic composition of hard corals were detected. Our results imply that coral recovery in isolated locations can occur rapidly after an initial delay in recruitment, presumably through the interacting effects of self-recruitment and reduced exposure to additive impacts such as coastal pollution

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom