z-logo
open-access-imgOpen Access
Production of reactive oxygen species during non-specific elicitation, non-host resistance and field resistance expression in cultured tobacco cells
Author(s) -
Amanda J. Able,
Mark W. Sutherland,
David Guest
Publication year - 2003
Publication title -
functional plant biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.917
H-Index - 116
eISSN - 1445-4408
pISSN - 1445-4416
DOI - 10.1071/fp02123
Subject(s) - biology , oomycete , hypersensitive response , reactive oxygen species , phytophthora nicotianae , plant disease resistance , phytophthora infestans , plant cell , botany , microbiology and biotechnology , phytophthora , pathogen , biochemistry , gene , blight
We examined production of reactive oxygen species (ROS) and induction of cell death in tissue-cultured tobacco cells undergoing different disease resistance responses. A superoxide-dependent hypersensitive response occurs during both the race-specific resistance response of tobacco cells challenged with incompatible zoospores of Phytophthora nicotianae and during non-specific elicitation of tobacco cells challenged with Phytophthora glucan elicitors extracted from the fungal cell wall. Inhibition studies are consistent with dependence upon endogenous Ca 2+ levels, and with involvement of NAD(P)H oxidase and peroxidases in production of ROS during both specific and non-specific elicitation. The patterns of resistance expression during non-host resistance or field resistance responses appear to be similar to race-specific resistance expression with regard to the timing and order of events. However, the intensity of the response is very much reduced. In contrast, during non-specific elicitation, these temporal patterns are significantly altered. The differences in timing, intensity and extent of responses during different modes of disease resistance expression indicate that stimulation of cultured plant cells with non-specific soluble fractions in order to model in planta events during plant / Oomycete and, by implication, plant / fungal interactions, has significant limitations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom