Dithienylbenzothiadiazole-Based Donor-Acceptor Organic Semiconductors and Effect of End Capping Groups on Organic Field Effect Transistor Performance
Author(s) -
Prashant Sonar,
Samarendra P. Singh,
Tingting Lin,
Ananth Dodabalapur
Publication year - 2013
Publication title -
australian journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.319
H-Index - 77
eISSN - 1445-0038
pISSN - 0004-9425
DOI - 10.1071/ch12421
Subject(s) - homo/lumo , organic field effect transistor , chemistry , thiophene , electron mobility , cyclic voltammetry , acceptor , density functional theory , analytical chemistry (journal) , field effect transistor , molecule , electrochemistry , materials science , computational chemistry , organic chemistry , transistor , electrode , optoelectronics , physics , quantum mechanics , voltage , condensed matter physics
Donor-Acceptor-Donor (D-A-D) based conjugated molecules 4,7-bis(5-(4-butoxyphenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (BOP-TBT) and 4,7-bis(5-(4-trifluoromethyl)phenyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (TFP-TBT) using thiophene-benzothiadiazole-thiophene central core with trifluoromethyl phenyl and butoxyphenyl end capping groups were designed and synthesised via Suzuki coupling. Optical, electrochemical, thermal, and organic field effect transistor (OFET) device properties of BOP-TBT and TFP-TBT were investigated. Both small molecules possess two absorption bands. Optical band gaps were calculated from the absorption cut off to be in the range of 2.06–2.25 eV. Cyclic voltammetry indicated reversible oxidation and reduction processes and the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels were calculated to be in the range of 5.15–5.40 eV and 3.25–3.62 eV, respectively. Upon testing both materials for OFET, trifluoromethylphenyl end capped material (TFP-TBT) shows n-channel behaviour whereas butoxyphenyl end capped material (BOP-TBT) shows p-channel behaviour. Density functional theory calculations correlated with shifting of HOMO-LUMO energy levels with respect to end capping groups. Vacuum processed OFET of these materials have shown highest hole carrier mobility of 0.02 cm2/Vs and electron carrier mobility of 0.004 cm2/Vs, respectively using Si/SiO2 substrate. By keeping the central D-A-D segment and just by tuning end capping groups gives both p- and n-channel organic semiconductors which can be prepared in a single step using straightforward synthesis
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom