z-logo
open-access-imgOpen Access
Differential Effect of Luminance Contrast Reduction and Noise on Motion Induction
Author(s) -
Mitsuhiko Hanada
Publication year - 2010
Publication title -
perception
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.619
H-Index - 91
eISSN - 1468-4233
pISSN - 0301-0066
DOI - 10.1068/p6726
Subject(s) - luminance , flicker , contrast (vision) , stimulus (psychology) , noise (video) , computer vision , motion perception , visibility , motion (physics) , optics , artificial intelligence , physics , communication , psychology , computer science , computer graphics (images) , image (mathematics) , psychotherapist
Motion perception in a region is affected by motion in the surround regions. When a physically static or flickering stimulus surrounded by moving stimuli appears to move in the direction opposite to that of the surround motion, it is referred to as motion contrast. When the centre appears to move in the same direction, it is referred to as motion assimilation. We investigated how noise and luminance contrast affect motion induction by employing static and dynamic counterphase flickering targets. The tendency of motion assimilation was found to be stronger at a high noise level than at a low noise level for both static and dynamic targets. On the other hand, a decrease of luminance contrast tended to strengthen the tendency of motion contrast. However, the addition of noise and the decrease of luminance contrast decreased the visibility of motion comparably. These results suggest that the visual system changes the mode of motion induction according to the noise level, but not the visibility.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom