z-logo
open-access-imgOpen Access
Detection Thresholds of Sound Image Movement Deteriorate during Sound Localization
Author(s) -
Kagesho Ohba,
Yukio Iwaya,
Akio Honda,
Yôiti Suzuki
Publication year - 2011
Publication title -
i-perception
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 26
ISSN - 2041-6695
DOI - 10.1068/ic807
Subject(s) - sound localization , stimulus (psychology) , precedence effect , acoustics , sound (geography) , confusion , perception , computer science , movement (music) , computer vision , communication , psychology , physics , cognitive psychology , neuroscience , psychoanalysis
Although a sound position without head movement localized, front-back confusion frequently occurs. Moreover, sound localization accuracy, especially front-back confusion, can be dramatically improved by listener head movement. This clearly shows that in sound localization both static cues involved in the sound signal input to the two ears and dynamic cues caused by listener motion are used. However, there have been few studies concerning spatial hearing dynamic situations. In this study, therefore, listener detection thresholds of movement of a sound stimulus during a sound localization task with head rotation were measured. Participants were first trained to rotate their heads at an indicated speed. Then during a sound localization trial, they were instructed to rotate their heads the direction of a sound stimulus at the speed. As a 2AFC paradigm was used, in one of two successive trials, the sound position (azimuthal angle) slightly moved during the rotation. Participants were asked to judge in which trial the sound stimuli moved. Results revealed that detection thresholds were dynamically raised when participants rotated their heads. Moreover, this effect did not depend on the velocities. These findings may suggest that a process similar to saccadic suppression in vision exists in dynamic sound localization

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom