z-logo
open-access-imgOpen Access
Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks
Author(s) -
Maria Pereira,
Jonas Deuermeier,
Pedro Freitas,
Pedro Barquinha,
Weidong Zhang,
Rodrigo Martins,
Elvira Fortunato,
Asal Kiazadeh
Publication year - 2022
Publication title -
apl materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.571
H-Index - 60
ISSN - 2166-532X
DOI - 10.1063/5.0073056
Subject(s) - neuromorphic engineering , crossbar switch , memristor , mnist database , materials science , spiking neural network , synaptic weight , artificial neural network , transistor , computer science , optoelectronics , bistability , electronic engineering , voltage , nanotechnology , artificial intelligence , electrical engineering , engineering

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom