Facilitating implementation of organs-on-chips by open platform technology
Author(s) -
Anke R. Vollertsen,
Aisen Vivas,
Berend J. van Meer,
Albert van den Berg,
Mathieu Odijk,
Andries D. van der Meer
Publication year - 2021
Publication title -
biomicrofluidics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.634
H-Index - 63
ISSN - 1932-1058
DOI - 10.1063/5.0063428
Subject(s) - interfacing , computer science , open standard , interchangeability , proof of concept , engineering management , risk analysis (engineering) , interoperability , software engineering , world wide web , engineering , business , computer hardware , programming language , operating system
Organ-on-chip (OoC) and multi-organs-on-chip (MOoC) systems have the potential to play an important role in drug discovery, disease modeling, and personalized medicine. However, most devices developed in academic labs remain at a proof-of-concept level and do not yet offer the ease-of-use, manufacturability, and throughput that are needed for widespread application. Commercially available OoC are easier to use but often lack the level of complexity of the latest devices in academia. Furthermore, researchers who want to combine different chips into MOoC systems are limited to one supplier, since commercial systems are not compatible with each other. Given these limitations, the implementation of standards in the design and operation of OoCs would strongly facilitate their acceptance by users. Importantly, the implementation of such standards must be carried out by many participants from both industry and academia to ensure a widespread acceptance and adoption. This means that standards must also leave room for proprietary technology development next to promoting interchangeability. An open platform with standardized interfacing and user-friendly operation can fulfill these requirements. In this Perspective article, the concept of an open platform for OoCs is defined from a technical perspective. Moreover, we discuss the importance of involving different stakeholders in the development, manufacturing, and application of such an open platform.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom