
Measurements of acoustic radiation force of ultrahigh frequency ultrasonic transducers using model-based approach
Author(s) -
Sangnam Kim,
San Moon,
Sunghoon Rho,
Sangpil Yoon
Publication year - 2021
Publication title -
applied physics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 442
eISSN - 1077-3118
pISSN - 0003-6951
DOI - 10.1063/5.0044512
Subject(s) - transducer , ultrasonic sensor , acoustic radiation force , acoustics , materials science , impulse (physics) , ultrasound , pulse duration , capacitive micromachined ultrasonic transducers , optics , physics , laser , quantum mechanics
Even though ultrahigh frequency ultrasonic transducers over 60 MHz have been used for single-cell-level manipulation such as intracellular delivery, acoustic tweezers, and stimulation to investigate cell phenotype and cell mechanics, no techniques have been available to measure the actual acoustic radiation force (ARF) applied to target cells. Therefore, we have developed an approach to measure the ARF of ultrahigh frequency ultrasonic transducers using a theoretical model of the dynamics of a solid sphere in a gelatin phantom. To estimate ARF at the focus of a 130 MHz transducer, we matched measured maximum displacements of a solid sphere with theoretical calculations. We selected appropriate ranges of input voltages and pulse durations for single-cell applications, and the estimated ARF was in the range of tens of μ N. To gauge the influence of pulse duration, an impulse of different pulse durations was estimated. Fluorescence resonance energy transfer live cell imaging was demonstrated to visualize calcium transport between cells after a target single cell was stimulated by the developed ultrasonic transducer.