z-logo
open-access-imgOpen Access
Equation-of-motion coupled-cluster method with double electron-attaching operators: Theory, implementation, and benchmarks
Author(s) -
Sahil Gulania,
Eirik F. Kjønstad,
John F. Stanton,
Henrik Koch,
Anna I. Krylov
Publication year - 2021
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/5.0041822
Subject(s) - coupled cluster , ansatz , atomic orbital , wave function , cluster (spacecraft) , electron , equations of motion , physics , atomic physics , quantum mechanics , chemistry , computer science , molecule , programming language
We report a production-level implementation of the equation-of-motion (EOM) coupled-cluster (CC) method with double electron-attaching (DEA) EOM operators of 2p and 3p1h types, EOM-DEA-CCSD. This ansatz, suitable for treating electronic structure patterns that can be described as two-electrons-in-many orbitals, represents a useful addition to the EOM-CC family of methods. We analyze the performance of EOM-DEA-CCSD for energy differences and molecular properties. By considering reduced quantities, such as state and transition one-particle density matrices, we compare EOM-DEA-CCSD wave functions with wave functions computed by other EOM-CCSD methods. The benchmarks illustrate that EOM-DEA-CCSD is capable of treating diradicals, bond-breaking, and some types of conical intersections.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom