Versatile and high temperature spectroscopic cell for operando fluorescence and transmission x-ray absorption spectroscopic studies of heterogeneous catalysts
Author(s) -
Daniel Eggart,
Anna Zimina,
Gülperi Cavusoglu,
Maria Casapu,
Dmitry E. Doronkin,
Kirill A. Lomachenko,
JanDierk Grunwaldt
Publication year - 2021
Publication title -
review of scientific instruments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 165
eISSN - 1089-7623
pISSN - 0034-6748
DOI - 10.1063/5.0038428
Subject(s) - microreactor , materials science , catalysis , isothermal process , analytical chemistry (journal) , absorption (acoustics) , raman spectroscopy , fluorescence spectroscopy , absorption spectroscopy , synchrotron , spectroscopy , fluorescence , chemistry , optics , organic chemistry , composite material , physics , thermodynamics , quantum mechanics
A modular high-temperature cell consisting of a plug-flow microreactor with a fixed catalyst bed and long heating zone has been established for operando x-ray absorption/fluorescence spectroscopic and diffraction studies. The functionality of the cell is demonstrated for two important areas: emission control using 2 wt. % Pd/Al2O3 acting as a three-way catalyst and direct conversion of methane to olefins and aromatics on a 0.5% Fe/SiO2 catalyst. The performance has been determined by online infrared spectroscopy and mass spectrometry, respectively. In addition, the cell can be combined with optical spectroscopy, such as Raman spectroscopy. The catalyst, present as powdered/sieved samples, can be measured under reaction conditions at temperatures of up to 1050 °C. Another key aspect is a long isothermal heating zone with a small temperature gradient (<3 °C/mm at 1000 °C without reaction) including an inert zone for pre-heating of the reactant gas. Due to the small size of the microreactor and the heating system including a water cooling system, heating/cooling rates of up to 100 °C/min can be achieved. Moreover, due to the compact design and the autonomous control system, the high temperature operando setup fits to the space at the majority of synchrotron beamlines. In many cases, the concentration of the element of interest in the catalysts is low requiring x-ray absorption spectroscopy measurements in the fluorescence measurement mode. Hence, the microreactor was designed to fit such needs as well. More specifically, the case of Fe-containing catalysts was particularly considered by using iron-free materials for the reactor housing.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom