Artificial neural networks for predicting charge transfer coupling
Author(s) -
Chun-I Wang,
Ignasius Joanito,
Chang-Feng Lan,
ChaoPing Hsu
Publication year - 2020
Publication title -
the journal of chemical physics
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/5.0023697
Subject(s) - computer science , artificial neural network , degrees of freedom (physics and chemistry) , charge (physics) , coupling (piping) , artificial intelligence , kernel (algebra) , representation (politics) , machine learning , transfer of learning , ab initio , transfer function , feature (linguistics) , statistical physics , physics , materials science , mathematics , quantum mechanics , engineering , electrical engineering , combinatorics , politics , political science , law , metallurgy , linguistics , philosophy
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom