The Iris billiard: Critical geometries for global chaos
Author(s) -
Gregory Page,
Charles Antoine,
Carl P. Dettmann,
J. Talbot
Publication year - 2020
Publication title -
chaos an interdisciplinary journal of nonlinear science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.971
H-Index - 113
eISSN - 1089-7682
pISSN - 1054-1500
DOI - 10.1063/5.0019968
Subject(s) - ellipse , dynamical billiards , physics , orbit (dynamics) , trajectory , event (particle physics) , chaotic , geometry , unit circle , mathematics , classical mechanics , mathematical analysis , astrophysics , computer science , quantum mechanics , artificial intelligence , engineering , aerospace engineering
We introduce the Iris billiard that consists of a point particle enclosed by a unit circle around a central scattering ellipse of fixed elongation (defined as the ratio of the semi-major to the semi-minor axes). When the ellipse degenerates to a circle, the system is integrable; otherwise, it displays mixed dynamics. Poincaré sections are presented for different elongations. Recurrence plots are then applied to the long-term chaotic dynamics of trajectories launched from the unstable period-2 orbit along the semi-major axis, i.e., one that initially alternately collides with the ellipse and the circle. We obtain numerical evidence of a set of critical elongations at which the system undergoes a transition to global chaos. The transition is characterized by an endogenous escape event, E, which is the first time a trajectory launched from the unstable period-2 orbit misses the ellipse. The angle of escape, θesc, and the distance of the closest approach, dmin, of the escape event are studied and are shown to be exquisitely sensitive to the elongation. The survival probability that E has not occurred after n collisions is shown to follow an exponential distribution.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom