z-logo
open-access-imgOpen Access
Machine learning for predicting the average length of vertically aligned TiO2 nanotubes
Author(s) -
Jesús Caro-Gutiérrez,
Félix F. González-Navarro,
Mario Curiel,
Oscar PerezLanderos,
Benjamín Valdez,
N. Nedev
Publication year - 2020
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/5.0012410
Subject(s) - support vector machine , materials science , ellipsometry , reflection (computer programming) , dimension (graph theory) , scanning electron microscope , computer science , linear regression , intensity (physics) , process (computing) , optics , artificial intelligence , machine learning , nanotechnology , mathematics , thin film , composite material , physics , pure mathematics , programming language , operating system

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom