Ultimate fate of a dynamical bubble/droplet system following acoustic vaporization
Author(s) -
Thomas Lacour,
Tony ValierBrasier,
François Coulouvrat
Publication year - 2020
Publication title -
physics of fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.188
H-Index - 180
eISSN - 1089-7666
pISSN - 1070-6631
DOI - 10.1063/5.0004375
Subject(s) - vaporization , physics , bubble , phase diagram , mechanics , phase (matter) , thermodynamics , two phase flow , statistical physics , flow (mathematics) , quantum mechanics
The phase-change of a liquid droplet induced by a supply of acoustic energy is known as “Acoustic Droplet Vaporization,” and it represents a versatile tool for medical applications. In an attempt to understand the complex mechanisms that drive the vaporization threshold, a theoretical concentric three phase model (bubble of vapor dodecafluoropentane + layer of liquid dodecafluoropentane + water) is used to compute numerical simulations of the vapor bubble time evolution. The dynamics are sorted into different regimes depending on their shared characteristic and the system ultimate fate. Those regimes are then organized within a phase diagram that collects all the possible dynamics and that predicts whether the complete vaporization occurs or not.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom