z-logo
open-access-imgOpen Access
The diffusion region in collisionless magnetic reconnection
Author(s) -
M. Hesse,
K. Schindler,
J. Birn,
M. M. Kuznetsova
Publication year - 1999
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.873436
Subject(s) - physics , electron , magnetic reconnection , magnetic field , electric field , field (mathematics) , computational physics , condensed matter physics , quantum mechanics , mathematics , pure mathematics
The structure of the dissipation region in collisionless magnetic reconnection is investigated by means of kinetic particle-in-cell simulations and analytical theory. Analyses of simulations of reconnecting current sheets without guide magnetic field, which keep all parameters fixed with the exception of the electron mass, exhibit very similar large scale evolutions and time scales. A detailed comparison of two runs with different electron masses reveals very similar large scale parameters, such as ion flow velocities and magnetic field structures. The electron-scale phenomena in the reconnection region proper, however, appear to be quite different. The scale lengths of these processes are best organized by the trapping length of bouncing electrons in a field reversal region. The dissipation is explained by the electric field generated by nongyrotropic electron pressure tensor effects. In the reconnection region, the relevant electron pressure tensor components exhibit gradients which are independent of t...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom