z-logo
open-access-imgOpen Access
Three-dimensional particle-in-cell simulation study of a relativistic magnetron
Author(s) -
R. W. Lemke,
T. C. Gei,
Tom Spencer
Publication year - 1999
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.873205
Subject(s) - physics , scaling , voltage , leakage (economics) , cathode , particle in cell , cavity magnetron , computational physics , magnetic field , plasma , atomic physics , mechanics , nuclear engineering , quantum electrodynamics , electrical engineering , nuclear physics , quantum mechanics , thin film , geometry , mathematics , sputtering , economics , macroeconomics , engineering
This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V {approximately} 500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases. Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the 0-space-harmonic of the {pi}-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom