Nonlinear electromagnetic gyrokinetic equation for plasmas with large mean flows
Author(s) -
H. Sugama,
W. Horton
Publication year - 1998
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.872941
Subject(s) - physics , plasma , gyrokinetics , nonlinear system , toroid , vlasov equation , classical mechanics , entropy production , convection–diffusion equation , magnetohydrodynamics , reynolds stress , quantum electrodynamics , mechanics , turbulence , statistical physics , tokamak , quantum mechanics
A new nonlinear electromagnetic gyrokinetic equation is derived for plasmas with large flow velocities on the order of the ion thermal speed. The gyrokinetic equation derived here retains a collision term and is given in the form which is valid for general magnetic geometries including the slab, cylindrical and toroidal configurations. The source term for the anomalous viscosity arising through the Reynolds stress is identified in the gyrokinetic equation. For the toroidally rotating plasma, particle, energy and momentum balance equations as well as the detailed definitions of the anomalous transport fluxes and the anomalous entropy production are shown. The quasilinear anomalous transport matrix connecting the conjugate pairs of the anomalous fluxes and the forces satisfies the Onsager symmetry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom