Ion Bernstein waves driven by two transverse flow layers
Author(s) -
M. A. Reynolds,
G. Ganguli
Publication year - 1998
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.872934
Subject(s) - physics , transverse plane , instability , radius , ion , eigenfunction , wavenumber , plasma , ionosphere , transverse mode , computational physics , plasma oscillation , atomic physics , flow (mathematics) , electric field , optics , mechanics , geophysics , quantum mechanics , eigenvalues and eigenvectors , computer security , structural engineering , computer science , engineering , laser
The interaction between two narrow layers of E×B flow is investigated, along with their stability properties. The mode frequencies, growth rates, and eigenfunctions are calculated. It is found that the instability due to a single layer is robust to the inclusion of a second layer. Specifically, when the separation between the layers is on the order of the ion-cyclotron radius, there is strong coupling between the two layers and the second layer is destabilizing. In addition, when the flow velocities are in opposite directions a wide variety of modes is possible, including near-zero-frequency modes, resulting in broadband structure in both the frequency spectrum and the wave number spectrum. These results may have implications for the understanding of the auroral ionosphere, where such spatial structure in the transverse electric field is often observed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom