Axial propagation of helicon waves
Author(s) -
Max Light,
Isaac D. Sudit,
Francis F. Chen,
Donald Arnush
Publication year - 1995
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.871032
Subject(s) - helicon , physics , dispersion relation , wavelength , excitation , magnetic field , standing wave , wave propagation , plasma , atomic physics , plane wave , lower hybrid oscillation , dispersion (optics) , computational physics , electromagnetic electron wave , optics , quantum mechanics
Traveling‐ and standing‐wave characteristics of the wave fields have been measured in a helicon discharge using a five‐turn, balanced magnetic probe movable along the discharge axis z. Helical and plane‐polarized antennas were used, and the magnitude and direction of the static magnetic field were varied, yielding three primary results. (1) As the density varies along z, the local wavelength agrees with the local dispersion relation. (2) Beats in the z variation of the wave intensity do not indicate standing waves, but instead are caused by the simultaneous excitation of two radial eigenmodes. Quantitative agreement with theory is obtained. (3) The damping rate of the helicon wave is consistent with theoretical predictions based on collisions alone.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom