Rheology of dense bubble suspensions
Author(s) -
Sang-Yoon Kang,
Ashok S. Sangani,
HengKwong Tsao,
Donald L. Koch
Publication year - 1997
Publication title -
physics of fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.188
H-Index - 180
eISSN - 1089-7666
pISSN - 1070-6631
DOI - 10.1063/1.869481
Subject(s) - physics , bubble , mechanics , reynolds number , viscosity , rheology , classical mechanics , shear flow , coalescence (physics) , newtonian fluid , two phase flow , viscous liquid , turbulence , thermodynamics , flow (mathematics) , astrobiology
The rheological behavior of rapidly sheared bubble suspensions is examined through numerical simulations and kinetic theory. The limiting case of spherical bubbles at large Reynolds number Re and small Weber number We is examined in detail. Here, Re=ργa2/μ and We=ργ2a3/s, a being the bubble radius, γ the imposed shear, s the interfacial tension, and μ and ρ, respectively, the viscosity and density of the liquid. The bubbles are assumed to undergo elastic bounces when they come into contact; coalescence can be prevented in practice by addition of salt or surface-active impurities. The numerical simulations account for the interactions among bubbles which are assumed to be dominated by the potential flow of the liquid caused by the motion of the bubbles and the shear-induced collision of the bubbles. A kinetic theory based on Grad’s moment method is used to predict the distribution function for the bubble velocities and the stress in the suspension. The hydrodynamic interactions are incorporated in this the...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom