The structure of the solar wind at large heliocentric distances: CIRs and their successors
Author(s) -
P. R. Gazis
Publication year - 1999
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.58727
Subject(s) - icon , citation , computer science , download , information retrieval , world wide web , search engine optimization , online search , search engine , programming language
Co-rotating interaction regions (CIRs) and their associated shock pairs are dominant structures in the solar wind between the heliocentric distances of 2 and 8 AU. At larger heliocentric distances, these structures undergo a qualitative change. Shocks decay to a point where they are often difficult to detect, and may have little influence on the dynamics of the solar wind. Interaction regions spread and merge, though they appear to retain their identity to surprisingly large distances from the Sun. Solar wind and IMF data from the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were used to conduct a comprehensive survey of CIRs and their successors between heliocentric distances of 1 and 55 AU over the last two solar cycles. The structure of the solar wind varied in a consistent fashion with heliocentric distances. Similar structures were observed at similar heliocentric distances by all three spacecraft during different portions of the solar cycle.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom