Hecke algebraic properties of dynamical R -matrices. Application to related quantum matrix algebras
Author(s) -
Ludmil Hadjiivanov,
A. P. Isaev,
O. Ogievetsky,
Pavel Pyatov,
Иван Тодоров
Publication year - 1999
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.532779
Subject(s) - realization (probability) , mathematics , pure mathematics , matrix (chemical analysis) , quantum , quantum group , algebra over a field , operator algebra , mathematical physics , quantum algebra , operator (biology) , type (biology) , algebra representation , quantum mechanics , physics , statistics , materials science , composite material , ecology , biochemistry , chemistry , repressor , biology , gene , transcription factor
The quantum dynamical Yang-Baxter (or Gervais-Neveu-Felder) equation definesan R-matrix R(p), where $p$ stands for a set of mutually commuting variables. Afamily of SL(n)-type solutions of this equation provides a new realization ofthe Hecke algebra. We define quantum antisymmetrizers, introduce the notion ofquantum determinant and compute the inverse quantum matrix for matrix algebrasof the type R(p) a_1 a_2 = a_1 a_2 R. It is pointed out that such a quantummatrix algebra arises in the operator realization of the chiral zero modes ofthe WZNW model.Comment: 28 pages, LaTe
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom