Acceleration and collision of ultra-high energy particles using crystal channels
Author(s) -
Pisin Chen,
R. Noble
Publication year - 1997
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.52977
Subject(s) - acceleration , collider , thermal emittance , physics , particle accelerator , work (physics) , center of mass (relativistic) , crystal (programming language) , accelerator physics , collision , nuclear physics , computational physics , aerospace engineering , beam (structure) , optics , computer science , mechanics , classical mechanics , quantum mechanics , engineering , computer security , energy–momentum relation , programming language
We assume that, independent of any near-term discoveries, the continuing goal of experimental high-energy physics (HEP) will be to achieve ultra-high center-of-mass energies early in the next century. To progress to these energies in such a brief span of time will require a radical change in accelerator and collider technology. We review some of our recent theoretical work on high-gradient acceleration of charged particles along crystal channels and the possibility of colliding them in these same strong-focusing atomic channels. An improved understanding of energy and emittance limitations in natural crystal accelerators leads to the suggestion that specially manufactured nano-accelerators may someday enable us to accelerate particles beyond 10{sup 8} eV with emittances limited only by the uncertainty principle of quantum mechanics.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom