The inverse problem concerning symmetries of ordinary differential equations
Author(s) -
F. González-Gascón,
Artemio González-López
Publication year - 1988
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.528000
Subject(s) - homogeneous space , mathematics , ordinary differential equation , lie group , pure mathematics , differential equation , integrating factor , mathematical physics , group (periodic table) , inverse , order (exchange) , mathematical analysis , physics , differential algebraic equation , quantum mechanics , geometry , finance , economics
It is shown that for any local Lie group G of transformations in R×Rn there exist differential systems of the form x(m=f(t,x,...,x(m−1), which are symmetrical under G. The order m_ of these systems is related to r_, the number of essential parameters of G.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom