Symmetries of differential equations. IV
Author(s) -
F. González-Gascón,
Artemio González-López
Publication year - 1983
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.525960
Subject(s) - homogeneous space , upper and lower bounds , differential equation , symmetry (geometry) , combinatorics , mathematics , mathematical physics , physics , symmetry group , group (periodic table) , mathematical analysis , quantum mechanics , geometry
By an application of the geometrical techniques of Lie, Cohen, and Dickson it is shown that a system of differential equations of the form [x^(r_i)]_i = F_i(where r_i > 1 for every i = 1 , ... ,n) cannot admit an infinite number of pointlike symmetry vectors. When r_i = r for every i = 1, ... ,n, upper bounds have been computed for the maximum number of independent symmetry vectors that these systems can possess: The upper bounds are given by 2n_ 2 + nr + 2 (when r> 2), and by 2n_2 + 4n + 2 (when r = 2). The group of symmetries of ͞x^r = ͞0 (r> 1) has also been computed, and the result obtained shows that when n > 1 and r> 2 the number of independent symmetries of these equations does not attain the upper bound 2n _2 + nr + 2, which is a common bound for all systems of differential equations of the form ͞x^r = F[t, ͞x, ... , ͞x^(r - 1 )] when r> 2. On the other hand, when r = 2 the first upper bound obtained has been reduced to the value n^2 + 4n + 3; this number is equal to the number of independent symmetry vectors of the system ͞x= ͞0, and is also a common bound for all systems of the form ͞x = ͞F (t ,͞x, ‾̇x)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom