z-logo
open-access-imgOpen Access
Symmetries of differential equations. IV
Author(s) -
F. González-Gascón,
Artemio González-López
Publication year - 1983
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.525960
Subject(s) - homogeneous space , upper and lower bounds , differential equation , symmetry (geometry) , combinatorics , mathematics , mathematical physics , physics , symmetry group , group (periodic table) , mathematical analysis , quantum mechanics , geometry
By an application of the geometrical techniques of Lie, Cohen, and Dickson it is shown that a system of differential equations of the form [x^(r_i)]_i = F_i(where r_i > 1 for every i = 1 , ... ,n) cannot admit an infinite number of pointlike symmetry vectors. When r_i = r for every i = 1, ... ,n, upper bounds have been computed for the maximum number of independent symmetry vectors that these systems can possess: The upper bounds are given by 2n_ 2 + nr + 2 (when r> 2), and by 2n_2 + 4n + 2 (when r = 2). The group of symmetries of ͞x^r = ͞0 (r> 1) has also been computed, and the result obtained shows that when n > 1 and r> 2 the number of independent symmetries of these equations does not attain the upper bound 2n _2 + nr + 2, which is a common bound for all systems of differential equations of the form ͞x^r = F[t, ͞x, ... , ͞x^(r - 1 )] when r> 2. On the other hand, when r = 2 the first upper bound obtained has been reduced to the value n^2 + 4n + 3; this number is equal to the number of independent symmetry vectors of the system ͞x= ͞0, and is also a common bound for all systems of the form ͞x = ͞F (t ,͞x, ‾̇x)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom