Binding, bonding and charge symmetry breaking in Λ-hypernuclei
Author(s) -
C. Samanta,
Thomas A. Schmitt
Publication year - 2019
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.5118401
Subject(s) - physics , binding energy , coulomb , neutron , mean field theory , nuclear physics , charge (physics) , symmetry breaking , mass number , atomic physics , particle physics , quantum mechanics , electron
Recent experiments have presented more accurate data on the ΛΛ-binding energies of a few ΛΛ-hypernuclei. This is important as the ΛΛ-bond energies (ΔBΛΛ) of double-Λ hypernuclei provide a measure of the in-medium strength of the ΛΛ-interaction. A mass formula, optimized with the newly available ΛΛ binding energy data, is used to estimate the binding energy and bond energy over a wide range of hypernuclei. The ΔBΛΛ values calculated with this mass formula are in good agreement with the experimental data and the predictions of the quark mean-field (QMF) and relativistic mean-field (RMF) models, except at low mass region where large uncertainties exist in the current experimental data. The ΛΛ-bond energies in ΛΛ-hypernuclei are found to diminish with neutron numbers, approaching zero near the neutron-drip line. In this formalism, the calculated binding energy difference in mirror nuclei arises from the Coulomb contributions and can be utilized to extract the Coulomb-corrected charge symmetry breaking effect in mirror Λ-hypernuclei. Our calculations show the regions where more experimental data are needed for light and neutron-rich Λ and ΛΛ-hypernuclei.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom