z-logo
open-access-imgOpen Access
Binding, bonding and charge symmetry breaking in Λ-hypernuclei
Author(s) -
C. Samanta,
Thomas A. Schmitt
Publication year - 2019
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.5118401
Subject(s) - physics , binding energy , coulomb , neutron , mean field theory , nuclear physics , charge (physics) , symmetry breaking , mass number , atomic physics , particle physics , quantum mechanics , electron
Recent experiments have presented more accurate data on the ΛΛ-binding energies of a few ΛΛ-hypernuclei. This is important as the ΛΛ-bond energies (ΔBΛΛ) of double-Λ hypernuclei provide a measure of the in-medium strength of the ΛΛ-interaction. A mass formula, optimized with the newly available ΛΛ binding energy data, is used to estimate the binding energy and bond energy over a wide range of hypernuclei. The ΔBΛΛ values calculated with this mass formula are in good agreement with the experimental data and the predictions of the quark mean-field (QMF) and relativistic mean-field (RMF) models, except at low mass region where large uncertainties exist in the current experimental data. The ΛΛ-bond energies in ΛΛ-hypernuclei are found to diminish with neutron numbers, approaching zero near the neutron-drip line. In this formalism, the calculated binding energy difference in mirror nuclei arises from the Coulomb contributions and can be utilized to extract the Coulomb-corrected charge symmetry breaking effect in mirror Λ-hypernuclei. Our calculations show the regions where more experimental data are needed for light and neutron-rich Λ and ΛΛ-hypernuclei.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom