z-logo
open-access-imgOpen Access
Making waves: Radiation damping in metallic nanostructures
Author(s) -
Tuphan Devkota,
Brendan S. Brown,
Gary Beane,
Kuai Yu,
Gregory V. Hartland
Publication year - 2019
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.5117230
Subject(s) - plasmon , nanostructure , electron , surface plasmon , surface plasmon polariton , terahertz radiation , localized surface plasmon , nanowire , radiation damping , oscillation (cell signaling) , condensed matter physics , materials science , physics , optics , optoelectronics , nanotechnology , chemistry , quantum mechanics , particle physics , biochemistry
Metal nanostructures display several types of resonances. In the visible and near-IR spectral regions, there are localized surface plasmon resonances (LSPRs) that involve the coherent oscillation of the conduction electrons. Extended metal nanostructures, such as nanowires or nanoplates, also exhibit propagating surface plasmon polaritons (PSPPs), which are motions of the electrons at the surface of the structure that have a well-defined momentum. In addition, the vibrational normal modes of metal nanostructures give rise to low frequency resonances in the gigahertz to terahertz range. These different types of motions/resonances suffer energy losses from internal effects and from interactions with the environment. The goal of this perspective is to describe the part of the energy relaxation process due to the environment. Even though the plasmon resonances and acoustic vibrational modes arise from very different physics, it turns out that environmental damping is dominated by radiation of waves. The way the rates for radiation damping depend on the size of the nanostructure and the properties of the environment will be discussed for the different processes. For example, it is well known that for LSPRs, the rate of radiation damping increases with particle size. However, the radiation damping rate decreases with increasing dimensions for PSPPs and for the acoustic vibrational modes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom