z-logo
open-access-imgOpen Access
Adsorption of brilliant green dye in aqueous medium using magnetic adsorbents prepared from rice husk ash
Author(s) -
Irvan Dahlan,
Haider M. Zwain,
Mohd Aliff Omar Seman,
Nurul Huda Baharuddin,
Mohd Roslee Othman
Publication year - 2019
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.5117077
Subject(s) - adsorption , husk , freundlich equation , aqueous solution , langmuir , nuclear chemistry , brilliant green , langmuir adsorption model , absorption (acoustics) , materials science , effluent , chemical engineering , chemistry , chromatography , composite material , organic chemistry , environmental engineering , environmental science , botany , engineering , biology
Large scale production and extensive application of synthetic dyes in the textile industry have caused considerable environmental pollution. The treatment of colored effluents using efficient technologies, are sought after due to this concern. This research evaluates the effectiveness of magnetic adsorbent (MRHA) prepared from rice husk ash (RHA) by a chemical processing method to remove brilliant green (BG) dye from an aqueous medium. The resulting MRHA adsorbents were tested at different initial concentration of 5–400mg/L, adsorbents amount of 0.5–2.3g, shaking rate of 50–300rpm, contact time of 15–120 min, pH of 3–11, and temperature of 27–60 C. A maximum removal of 96.65% was obtained at initial dye concentration of 200mg/L, adsorbents amount of 2g, shaking rate of 150rpm, contact time of 60min, and temperature of 50 C. The fresh and spent MRHA adsorbents were analyzed through scanning electron microscopy (SEM) and particle size distribution. The particle analysis of the fresh and spent adsorbents indicated bimodal pore size of 90 and 900 µm, respectively. The adsorption behavior of the adsorbent followed those of the Langmuir, Freundlich, and Temkin isotherm models. However, Temkin isotherm model displayed the best fit with the coefficient of determination, R2 of 0.811, suggesting a strong interaction, equivalent to that of chemical absorption between BG dye molecules and the surface of MRHA adsorbent for effective removal of BG dye from the aqueous medium. The magnetic character of the adsorbents allowed the spent sample to be isolated successfully and conveniently by using an external magnetic field.Large scale production and extensive application of synthetic dyes in the textile industry have caused considerable environmental pollution. The treatment of colored effluents using efficient technologies, are sought after due to this concern. This research evaluates the effectiveness of magnetic adsorbent (MRHA) prepared from rice husk ash (RHA) by a chemical processing method to remove brilliant green (BG) dye from an aqueous medium. The resulting MRHA adsorbents were tested at different initial concentration of 5–400mg/L, adsorbents amount of 0.5–2.3g, shaking rate of 50–300rpm, contact time of 15–120 min, pH of 3–11, and temperature of 27–60 C. A maximum removal of 96.65% was obtained at initial dye concentration of 200mg/L, adsorbents amount of 2g, shaking rate of 150rpm, contact time of 60min, and temperature of 50 C. The fresh and spent MRHA adsorbents were analyzed through scanning electron microscopy (SEM) and particle size distribution. The particle analysis of the fresh and spent adsorbents ind...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom