z-logo
open-access-imgOpen Access
A low cost and large-scale synthesis of 3D photonic crystal with SP2 lattice symmetry
Author(s) -
Mei-Li Hsieh,
Shuyu Chen,
Alex Kaiser,
Yang-Jhe Yan,
Brian J. Frey,
Ishwara Bhat,
R. Dahal,
Sayak Bhattacharya,
Sajeev John,
Shawn-Yu Lin
Publication year - 2019
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.5113549
Subject(s) - photonic crystal , lithography , materials science , fabrication , photonics , photovoltaics , wafer , optoelectronics , template , optics , nanotechnology , photovoltaic system , physics , pathology , biology , medicine , ecology , alternative medicine
In this work, a novel lithographic method is proposed to prepare three-dimensional (3D) photonic crystal (PC) that is different from conventional top-down and bottom-up approaches. The method combines a 2D optical mask and off-the-axis double optical exposures to create a desirable 3D PC structure. Since the method uses only two optical exposures of a photo-resist layer, it is inherently a low-cost, high throughput and wafer-scale lithographic method. The method is implemented to make a slanted post 3D PC having the SP2 lattice symmetry. Three types of SP2 3D PC structures were successfully fabricated with a minimum feature size of d=1.5 μm over a large scale of 8x10 mm2, without any observable fabrication defects. The SP2 PCs are: (i) SU8 posts in air background, (ii) air pores in CdS background and (iii) Pt coated on SU8 SP2 templates. A spectroscopic study of the SP2 PCs shows select spectral regions of high reflectance, indicating the existence of a photonic stop band. This low-cost and large-scale method could enable broader technological impacts of 3D PC materials in areas such as thermo-photovoltaics and above room-temperature Bose-Einstein Condensation. Furthermore, this off-axis method could lead to the creation of an entirely new class of slanted-rod based photonic crystals, such as topological photonic crystal in 3D.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom