z-logo
open-access-imgOpen Access
Global simulation of ion temperature gradient instabilities in a field-reversed configuration
Author(s) -
Jian Bao,
Calvin Lau,
Zhihong Lin,
Haochuan Wang,
Daniel Fulton,
Sean Dettrick,
T. Tajima
Publication year - 2019
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.5087079
Subject(s) - physics , curvature , plasma , temperature gradient , field reversed configuration , ion , instability , field (mathematics) , axial symmetry , separatrix , atomic physics , mechanics , tokamak , magnetic confinement fusion , meteorology , geometry , nuclear physics , mathematics , quantum mechanics , pure mathematics
We investigate the global properties of drift waves in the beam driven field-reversed configuration (FRC), the C2-U device, in which the central FRC and its scrape-off layer (SOL) plasma are connected with the formation sections and divertors. The ion temperature gradient modes are globally connected and unstable across these regions, while they are linearly stable inside the FRC separatrix. The unstable global drift waves in the SOL show an axially varying structure that is less intense near the central FRC region and the mirror throat areas, while being more robust in the bad curvature formation exit areas.We investigate the global properties of drift waves in the beam driven field-reversed configuration (FRC), the C2-U device, in which the central FRC and its scrape-off layer (SOL) plasma are connected with the formation sections and divertors. The ion temperature gradient modes are globally connected and unstable across these regions, while they are linearly stable inside the FRC separatrix. The unstable global drift waves in the SOL show an axially varying structure that is less intense near the central FRC region and the mirror throat areas, while being more robust in the bad curvature formation exit areas.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom