z-logo
open-access-imgOpen Access
Reactive coagulation of single-walled carbon nanotubes for tougher composites – Solution processing and assembly
Author(s) -
Adam J. Clancy,
David B. Anthony,
Milo S. P. Shaffer
Publication year - 2019
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.5084883
Subject(s) - nanocomposite , carbon nanotube , materials science , composite material , polyvinyl chloride , ultimate tensile strength , extrusion , polymer , modulus
The injection of reduced single-walled carbon nanotubes into a coagulation bath of polyvinyl chloride (PVC) solution leads to the formation of nanocomposite fibres with polymer covalently bound to the nanotubes. The influence of PVC concentration and molecular weight, and the extrusion diameter on the nanocomposite fibre tensile properties and composition have been examined. The nanocomposite fibres produced have strengths as high as 480 MPa and modulus of 15 GPa, making them the strongest and stiffest PVC composites recorded to date.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom