z-logo
open-access-imgOpen Access
The ratio of the number of states in asymmetric and symmetric ozone molecules deviates from the statistical value of 2
Author(s) -
Igor Gayday,
Alexander Teplukhin,
Dmitri Babikov
Publication year - 2019
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.5082850
Subject(s) - ozone , molecule , dissociation (chemistry) , chemistry , spectral line , bond dissociation energy , atomic physics , computational chemistry , chemical physics , physics , organic chemistry , quantum mechanics
Accurate calculations of vibrational states in singly and doubly substituted ozone molecules are carried out, up to dissociation threshold. Analysis of these spectra reveals noticeable deviations from the statistical factor of 2 for the ratio between the number of states in asymmetric and symmetric ozone molecules. It is found that, for the lower energy parts of spectra, the ratio is less than 2 in the singly substituted ozone molecules, but it is more than 2 in the doubly substituted ozone molecules. However, the upper parts of spectra, just below dissociation thresholds, exhibit a different behavior. In this energy range, the singly and doubly substituted ozone molecules behave similar, with the ratio of states in asymmetric and symmetric ozone molecules being more than 2 in both cases. This property may contribute to an explanation of the mysterious η-effect in the ozone forming reaction that favors the formation of the asymmetric ozone molecules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom