z-logo
open-access-imgOpen Access
Electromagnetic and mechanical characterization of a flexible coil for transcranial magnetic stimulation
Author(s) -
Mengfei Liu,
Pauli H. Tuovinen,
Yuta Kawasaki,
Mohamed Amine Yedeas,
Youichi Saitoh,
Masaki Sekino
Publication year - 2019
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.5080148
Subject(s) - electromagnetic coil , transcranial magnetic stimulation , head (geology) , bending , magnetic field , eddy current , acoustics , voice coil , materials science , search coil , mechanics , physics , nuclear magnetic resonance , magnetic flux , stimulation , composite material , geology , quantum mechanics , geomorphology , neuroscience , biology
Transcranial magnetic stimulation is a painless and noninvasive method for treating brain disorders. The coil-geometries that match the head topologies achieve more effective stimulation, however it is difficult for a rigid coil to fit the skulls of all patients. We propose and develop a rubber-like flexible coil that can be shaped into different geometries to reduce the inter-individual variabilities in its clinical use. The main challenge is attributed to the fact that the external bending and induced Lorentzian forces cause coil deformation and fatigue. Herein, we investigated the influence of bending on the electromagnetic characteristics of the flexible coil. The magnetic field distribution was calculated and measured using a search coil. The induced Lorentzian force was calculated and the induced eddy current density was simulated using the scalar potential finite difference (SPFD) method. For a mechanical characterization, we fixed the center of the coil, and external bending forces were applied on the two wings of the coils, while Lorentzian forces were applied in a direction normal to the side wall of the wire groove. Fatigue analyses of these forces were also conducted. The results show that the eddy current density induced in the brain by the flexible coil was significantly higher compared to that of the figure-eight and butterfly coils. Fatigue analyses show that the bending force required to achieve a close coil fit on the human head and the generated Lorentzian force would not lead to fatigue problem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom