z-logo
open-access-imgOpen Access
Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement
Author(s) -
Liang Wu,
Alexandr Malijevský,
Carlos Avendaño,
Erich A. Müller,
George Jackson
Publication year - 2018
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.5020002
Subject(s) - hard spheres , rod , adsorption , spheres , materials science , surface (topology) , monte carlo method , binary number , chemical physics , thermodynamics , chemistry , physics , geometry , mathematics , medicine , alternative medicine , statistics , pathology , arithmetic , astronomy
A molecular simulation study of binary mixtures of hard spherocylinders (HSCs) and hard spheres (HSs) confined between two structureless hard walls is presented. The principal aim of the work is to understand the effect of the presence of hard spheres on the entropically driven surface nematization of hard rod-like particles at surfaces. The mixtures are studied using a constant normal-pressure Monte Carlo algorithm. The surface adsorption at different compositions is examined in detail. At moderate hard-sphere concentrations, preferential adsorption of the spheres at the wall is found. However, at moderate to high pressure (density), we observe a crossover in the adsorption behavior with nematic layers of the rods forming at the walls leading to local demixing of the system. The presence of the spherical particles is seen to destabilize the surface nematization of the rods, and the degree of demixing increases on increasing the hard-sphere concentration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom