z-logo
open-access-imgOpen Access
Stability of the helical configuration of an intrinsically straight semiflexible biopolymer inside a cylindrical cell
Author(s) -
Zicong Zhou,
Béla Joós,
ChenXu Wu
Publication year - 2017
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.5002145
Subject(s) - helix (gastropod) , biopolymer , protein filament , torque , mreb , materials science , condensed matter physics , chemical physics , mechanics , classical mechanics , physics , nanotechnology , chemistry , polymer , thermodynamics , composite material , cell , cytoskeleton , ecology , biochemistry , snail , biology
We examine the effects of the external force, torque, temperature, confinement, and excluded volume interactions (EVIs) on the stability of the helical configuration of an intrinsically straight semiflexible biopolymer inside a cylindrical cell. We find that to stabilize a helix, the confinement from both ends of the cell is more effective than a uniaxial force. We show that under a uniaxial force and in absence of confinement from bottom of the cell, a stable helix is very short. Our results reveal that to maintain a low pitch helix, a torque acting at both ends of the filament is a necessity, and the confinement can reduce the required torque to less than half making it much easier to form a stable helix. Moreover, we find that thermal fluctuations and EVIs have little impact on the stability of a helix. Our results can help understand the existence of the helix and ring configurations of some semiflexible biopolymers, such as MreB homologs, inside a rod-shaped bacteria

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom