z-logo
open-access-imgOpen Access
Competition between the inter-valley scattering and the intra-valley scattering on magnetoconductivity induced by screened Coulomb disorder in Weyl semimetals
Author(s) -
Xuanting Ji,
Hai-Zhou Lu,
ZhenGang Zhu,
Gang Su
Publication year - 2017
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4998395
Subject(s) - condensed matter physics , scattering , semimetal , physics , coulomb , magnetic field , weyl semimetal , transverse plane , landau quantization , electron , quantum mechanics , band gap , structural engineering , engineering
Recent experiments on Weyl semimetals reveal that charged impurities may play an important role. We use a screened Coulomb disorder to model the charged impurities, and study the magneto-transport in a two-node Weyl semimetal. It is found that when the external magnetic field is applied parallel to the electric field, the calculated longitudinal magnetoconductivity shows positive in the magnetic field, which is just the negative longitudinal magnetoresistivity (LMR) observed in experiments. When the two fields are perpendicular to each other, the transverse magnetoconductivities are measured. It is found that the longitudinal (transverse) magnetoconductivity is suppressed (enhanced) sensitively with increasing the screening length. This feature makes it hardly to observe the negative LMR in Weyl semimetals experimentally owing to a small screening length. Our findings gain insight into further understanding on recently actively debated magneto-transport behaviors in Weyl semimetals. Furthermore we studied the relative weight of the inter-valley scattering and the intra-valley scattering. It shows that the former is as important as the latter and even dominates in the case of strong magnetic fields and small screening length. We emphasize that the discussions on inter-valley scattering is out of the realm of one-node model which has been studied

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom