z-logo
open-access-imgOpen Access
Compression-induced phase transition of GaN bulk from wurtzite phase to five-fold coordination hexagonal phase
Author(s) -
Qian Yu,
Fulin Shang,
Qiang Wan,
Yabin Yan
Publication year - 2017
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4989620
Subject(s) - wurtzite crystal structure , phase transition , phase (matter) , materials science , condensed matter physics , molecular dynamics , crystallography , elastic energy , strain energy , strain rate , hexagonal crystal system , chemistry , thermodynamics , composite material , computational chemistry , physics , organic chemistry , finite element method
The phase transformation of GaN bulk from the Wurtzite phase (WZ) to the hexagonal phase (HX) is studied by molecular dynamics simulation. The mechanical response and atomic structural evolution of transition are analyzed in detail. In addition, the loading rate effect on the phase transition is determined, that is, the phase transition ratio declines with a decrease of the strain rate. The WZ GaN bulk completely transforms into the HX phase in the case of compression at an ultrahigh strain rate. However, at a relatively slower strain rate, the HX phase of GaN partly nucleates and the untransformed regions are proved to be elastic deformed regions. Combined with an energy analysis, two atomic movement modes are recognized as the inducements for the phase transition and formation of elastic deformed regions. The first mode, which is responsible for the formation of elastic deformed regions, is an atomic sliding motion along the c {0001} planes. The second mode is a radial stretching atomic motion. The radial stretching motion, which requires a lot of energy, induces the WZ-HX phase transition. Moreover, the phase transition is affected drastically by the rise of temperature

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom