z-logo
open-access-imgOpen Access
High frequency characterization of Galfenol minor flux density loops
Author(s) -
Ling Weng,
Weina Li,
Ying Sun,
Wenmei Huang,
Bowen Wang
Publication year - 2017
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4976579
Subject(s) - materials science , coercivity , magnetic flux , nuclear magnetic resonance , flux (metallurgy) , condensed matter physics , permeability (electromagnetism) , low frequency , magnetic field , frequency dependence , physics , chemistry , biochemistry , quantum mechanics , astronomy , membrane , metallurgy
This paper presents the first measurement of ring-shaped Galfenol’s high frequency-dependent minor flux density loops. The frequencies of applied AC magnetic field are 1k, 5k, 10k, 50k, 100k, 200k, 300k, 500 kHz. The measurements show that the cycle area between the flux density and magnetic field curves increase with increasing frequency. High frequency-dependent characterization, including coercivity, specific power loss, residual induction, and maximum relative permeability are discussed. Minor loops for different max induction are also measured and discussed at the same frequency 100 kHz. Minor loops with the same max induction 0.05 T for different frequencies 50, 100, 200, 300, 400 kHz are measured and specific power loss are discussed

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom