Tunneling magnetoresistance in nanogranular La1-xSrxMnO3 (x∼0.5)
Author(s) -
J. Hejtmánek,
Z. Jirák,
Ondřej Kaman,
S. Vratislav
Publication year - 2017
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4975366
Subject(s) - manganite , condensed matter physics , materials science , magnetoresistance , ferromagnetism , magnetization , spark plasma sintering , antiferromagnetism , spin canting , colossal magnetoresistance , magnetic field , ceramic , metallurgy , physics , quantum mechanics
Electric transport and magnetic studies were performed on the La1-xSrxMnO3 (x=0.45-0.55) perovskite manganites. The main focus was given to the nanogranular ceramics of average x=0.47 composition, compacted by spark plasma sintering of molten salt synthesized nanoparticles. This sample can be viewed as a two-phase composite where FM manganite granules are embedded in AFM manganite matrix. The magnetoconductance data observed on this sample reveal a coexistence of distinct low- and high-field contributions, related to the field-induced alignment of ferromagnetic (FM) granules and the spin canting in antiferromagnetic (AFM) matrix, respectively. Their analysis confirms the theoretically predicted scaling of the low-field effect with squared reduced magnetization and provides also a quantitative comparison between the linear coefficient of high-field magnetoconductance and paraprocess seen in the magnetization measurement
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom