z-logo
open-access-imgOpen Access
The computation of zeros of Ahlfors map for multiply connected regions
Author(s) -
Kashif Nazar,
Ali H. M. Murid,
Ali W. K. Sangawi
Publication year - 2017
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.4972147
Subject(s) - mathematics , kernel (algebra) , boundary (topology) , bounded function , simply connected space , integral equation , computation , function (biology) , mathematical analysis , pure mathematics , algorithm , evolutionary biology , biology
The relation between the Ahlfors map and Szegö kernel S(z,a) is classical. The Szegö kernel is a solution of a Fredholm integral equation of the second kind with the Kerzman-Stein kernel. The exact zeros of the Ahlfors map are known for a particular family of doubly connected regions and a particular triply connected region. This paper presents a numerical method for computing the zeros of the Ahlfors map of any bounded multiply connected regions with smooth boundaries. The method depends on the values of S (z(t), a), S′(z(t), a) and θ′(t), where θ(t) is the boundary correspondence function of Ahlfors map. A formula is derived for computing S′(z(t), a). An integral equation for θ′(t) is used for finding the zeros of Ahlfors map. The numerical examples presented here demonstrate the metho

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom