Microturbulence in DIII-D tokamak pedestal. III. Effects of collisions
Author(s) -
Xuhe Liao,
Zhihong Lin,
I. Holod,
Yong Xiao,
Bo Li,
P.B. Snyder
Publication year - 2016
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.4972079
Subject(s) - diii d , microturbulence , pedestal , physics , ballooning , tokamak , toroid , atomic physics , plasma , nuclear physics , archaeology , history
Gyrokinetic simulations of the H-mode pedestal in DIII-D discharge 145701 find that the kinetic ballooning mode (KBM) is the most unstable mode for low toroidal numbers (n ≤ 25) and that the trapped electron mode (TEM) dominates over the KBM at higher toroidal mode numbers for realistic pressure gradients in the pedestal. Collisions reduce the TEM growth rate but have little effects on the KBM. KBM has the conventional ballooning mode structure peaking at the outer mid-plane, while TEM has an unconventional mode structure peaking at the top and bottom of the poloidal plane.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom