z-logo
open-access-imgOpen Access
Explorations on size limit of L1-FePt nanoparticles for practical magnetic storage
Author(s) -
Tao Huang,
Haiwei Wang,
Yuhao Zou,
Weiming Cheng,
Changsheng Xie
Publication year - 2016
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4967243
Subject(s) - curie temperature , nanoparticle , materials science , volume (thermodynamics) , micromagnetics , magnetic nanoparticles , condensed matter physics , curie , nanotechnology , ferromagnetism , thermodynamics , magnetization , physics , magnetic field , quantum mechanics
With the advance of HAMR technology, the storage potential of L10-FePt nanoparticles with practical considerations are of great significance. We present an L10-FePt nanoparticle model based on atomistic spin model with Langevin thermodynamics to simulate the magnetic behaviors of L10-FePt nanoparticles at Curie temperature and room temperature to explore their practical design margins. Given specific composites, the Curie temperatures of L10-FePt nanoparticles decrease with their volume sizes decrease starting from 8 nm, meaning no more laser power increment needed for smaller L10-FePt nanoparticles. However, L10-FePt nanoparticles get unstable more easily while their volume sizes decrease at room temperature within 10 years. Above all, a reasonable size of L10-FePt nanoparticles for stable information retaining should not be less than 8 nm at a certain aspect ratio

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom