Growth of L1-ordered crystal in FePt and FePd thin films on MgO(001) substrate
Author(s) -
Masaaki Futamoto,
Masahiro Nakamura,
Mitsuru Ohtake,
Nobuyuki Inaba,
Teruho Shimotsu
Publication year - 2016
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4960554
Subject(s) - materials science , nucleation , crystallography , annealing (glass) , thin film , epitaxy , crystal structure , electron diffraction , substrate (aquarium) , condensed matter physics , diffraction , layer (electronics) , nanotechnology , composite material , chemistry , optics , physics , oceanography , organic chemistry , geology
Formation of L10-oredered structure from disordered A1 phase has been investigated for FePt and FePd films on MgO(001) substrates employing a two-step method consisting of low temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. L10-(001) variant crystal with the c-axis perpendicular to the substrate grows preferentially in FePd films whereas L10-(100), (010) variants tend to be mixed with the L10-(001) variant in FePt films. The structure analysis by X-ray diffraction indicates that a difference in A1 lattice strain is the influential factor that determines the resulting L10-variant structure in ordered thin films. Misfit dislocations and anti-phase boundaries are observed in high-resolution transmission electron micrographs of 10 nm-thick Fe(Pt, Pd) film consisting of L10-(001) variants which are formed through atomic diffusion at 600 °C in a laterally strained FePt/PeFd epitaxial thin film. Based on the experimental results, a nucleation and growth model for explaining L10-variant formation is proposed, which suggests a possibility in tailoring the L10 variant structure in ordered magnetic thin films by controlling the alloy composition, the layer structure, and the substrate material
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom